
App for Microgrid Demonstration sddec21-21
Team Members: William Bronson, Michael Doyle, Gabriel Rueger, Patrick Shirazi, Micheal Thai
Client: Anne Kimber
Faculty Advisors: Mathew Wymore, Nicholas David, Steven Nystrom

Introduction
Problem Statement: The ISU Electric Power Research Center operates a solar
crate with microgrid data from multiple data sources, but there isn’t a
effective way of accessing the data.

Solution: Our team created a mobile application to retrieve and present the
data collected by the solar crate to public users and site maintainers.

Design Requirements
Functional Requirements:
● Ability to add additional crates
● Ability to add additional data sources
● Query and search different subsets of the data
● Configurable data collection interval
● Support automatic archiving of data.

Non-Functional Requirements:
● Data must be displayed within a minute of collection
● Database size scales with data sources and time
● Libraries must be well-supported and maintained
● Must use open and well-supported communication

standards
● All design decisions must be well documented

Engineering Constraints:
● Scalability - scale well for large number of sites
● Performance - want timely data
● Adaptability - new data sources and sites easily added
● Usability - user friendly

Operating Environments:
● iOS/Android for mobile app
● Linux Server for backend

Intended Users and Uses
This mobile application is intended for

educational/informational purposes and publicity and

will display each site’s overall performance.

Additionally, researchers should be able to access the

voltage, current, and frequency data readings.

Design Approach

Technical Details
The Backend was comprised of a Spring Boot server, Apache Cassandra database and data collector scripts written in
Python. Each of these services was containerized and deployed using docker and docker-compose.
The Frontend was a cross platform mobile application for iOS and Android written in React Native. Key libraries we
utilized were react-native-svg-charts to handle the graphing capabilities and sockjs to handle websocket
communication.
Important considerations during the design and development of the application included handling the large amount
of data consumed by the system which affected all parts of the app, including database design and tool choice, socket
communication and graph displays.

Testing
Testing Tools:
● Jest and Enzyme for Frontend
● JUnit, Mockito and Postman for

Backend

Testing Strategies:
● Unit tests - Tests for functions

used in frontend components
and backend services

● Integration Tests - Testing screen
components with different states
and actions, as well as endpoints

● Acceptance Testing - Weekly
demos to advisors on features
completed during the week to
gather feedback or approval

Page for viewing live data from a site Page for exporting data from a site

