
App for Microgrid Demonstration
Design Document

Team sddec21-21

Client: Anne Kimber

Advisors: , ,Mathew Wymore Steve Nystrom Nicholas David

Team: , , , ,Gabriel Rueger Michael Doyle Micheal Thai Patrick Shirazi William Bronson

Email: sddec21-21@iastate.edu

Website: http://sddec21-21.sd.ece.iastate.edu

Revised: March 9, 2021 - v1

mailto:mlwymore@iastate.edu
mailto:sjnystro@iastate.edu
mailto:ndavid@iastate.edu
mailto:gmrueger@iastate.edu
mailto:mfdoyle@iastate.edu
mailto:mthai28@iastate.edu
mailto:pshirazi@iastate.edu
mailto:wbronson@iastate.edu
mailto:sddec21-21@iastate.edu
http://sddec21-21.sd.ece.iastate.edu

Development Standards & Practices Used
Waterfall Model for development cycle.

Coding Standards to maintain quality code base.

Digital design standards for optimization and consistency of our mobile

application.

Summary of Requirements

- The server shall have the ability to add additional crates from the

microgrid

- The database shall be configured to add additional data sources to the

database for each crate

- The database shall be able to query and search different subsets of the data

- The database shall have a configurable data collection interval

- The database shall support automatic archiving of data

- The mobile application shall display data within a minute of collection

- The database size shal scale linearly with the number of data sources and

with time

- The server shall reduce old data to 10 minute averages and store it in a

separate database

- Frameworks, libraries, etc. for this project shall be well-supported and

maintained

- Throughout this project, open and well-supported communication

standards shall be used

- All decisions made throughout this project shall be well documented

Applicable Courses from Iowa State University Curriculum

SE/CPRE/EE 185

COM S 227, 228, 309

S E 329, 339

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

The EE students will be introduced to Java programming language. The EE

students also learned some basics of the backend, frontend, and database aspects

of this project. TBD as progress on the project continues.

Table of Contents
1 Introduction 5

Acknowledgement 5

Problem and Project Statement 5

Operational Environment 5

Requirements 5

Intended Users and Uses 6

Assumptions and Limitations 6

Expected End Product and Deliverables 6

Project Plan 7

2.1 Task Decomposition 7

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 10

2.6 Personnel Effort Requirements 10

2.7 Other Resource Requirements 11

2.8 Financial Requirements 12

3 Design 12

3.1 Previous Work And Literature 12

Design Thinking 12

Proposed Design 12

3.4 Technology Considerations 13

3.5 Design Analysis 15

Development Process 15

Design Plan 16

4 Testing 16

Unit Testing 16

Interface Testing 16

Acceptance Testing 17

Results 17

5 Implementation 17

6 Closing Material 17

6.1 Conclusion 17

6.2 References 17

6.3 Appendices 17

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

1 Introduction

1.1 ACKNOWLEDGEMENT

Lead Project Advisor - Anne Kimber

Advisors - Nicholas David, Steve Nystrom, Mathew Wymore

1.2 PROBLEM AND PROJECT STATEMENT

This application will serve as an efficient way for public users and crate maintainers to analyze
efficiency of power collection and distribution of the solar crate from data presented through the
application. Crate maintainers will be able to gain a better understanding of how a crate collects
energy over time. Crate users will know what the crate could be used to power given how much
power is stored in the crate's battery storage.

The solar crate will be deployed in areas of disaster, or areas that have lost their access to electricity.
The crate will be utilized as a temporary power source for these affected areas, allowing users to
power essential items like mobile phones and electric cars.

Problem statement:

Retrieve and present energy data collected by solar crate to public users and crate maintainers.

Solution approach:

Build an approachable mobile application that presents energy data from the solar powered crate.
Application will utilize many different graphs and tables to present this data in a comprehensive
and organized way. The mobile application will be built using basic backend and frontend
components seen among other mobile applications of this type (i.e. database, user-interface, API).

1.3 OPERATIONAL ENVIRONMENT

Application will need to be functional on iOS and Android mobile platforms. This application will
be exposed to and used by the public to gain information about the sun crate. It is a necessary
requirement that there is built in security to protect the data being exposed to users, and cannot be
modified by average users. Application components will also need to be performant to allow
multiple users to analyze data presented on the application. Application will also need the ability to
scale with the number of crates deployed at that time.

1.4 REQUIREMENTS

The requirements from our faculty advisors for the 2021 Spring semester to develop an app to show
the operational data from a solar/Tesla powerwall/storage/wind/diesel/car charging off-grid
microgrid operating in Ames, IA, are as follows:

For the backend:

● It should easily extend to additional data sources and display methods.
● It should have a configurable data collection interval.
● It should have an automatic support archiving of data.
● It should take 10-minute averages for older data.

mailto:akimber@iastate.edu

● It should be a secure but open system (it does not need authentication but should be
extendable).

● The database size should scale linearly with the number of data sources and with the time.

For the frontend/display:

● It should be a mobile app (iOS & Android).
● It should support browsing raw/averaged data.
● It should support graphing data over time, configuring time range, and show the data

sources.

For the whole system:

● It should fit into the client’s architecture.
● It should have a max 1-minute delay between updated value and display.
● It must use open and well-supported communication standards.
● The software should be maintainable.
● The frameworks and libraries must be well-supported and maintained.

1.5 INTENDED USERS AND USES

This mobile application is intended for the general public and will display the microgrid’s overall
performance. Additionally, researchers should be able to access the voltage, current, and frequency
data readings.

1.6 ASSUMPTIONS AND LIMITATIONS

The following assumptions are as follows:

● The mobile app will only take data from one solar crate during development.
● Students will be given a way to access the microgrid data via the remote desktop.
● The mobile application should be able to display a time range of data from a crate in a

graphical format.
● The mobile application only needs to use the English language.
● The team will be provided with a virtual machine to host the application.

The following limitations are as follows:

● The budget to produce the application will be negligible.
● The mobile application will be developed by the end of the 2021 Spring semester.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The end product of this project is an application that collects and displays operational data from an
off-grid microgrid in Ames. To accomplish this, a number of deliverables must be achieved. These
deliverables include:
– A data aggregator to collect all the data from the data sources. This will function to access and
process the operational data of the microgrid into the form that the rest of the application needs.

– A database to store the collected data. This will store all the collected data from the data

aggregator and will make the data readily available to the rest of the application.

– A mobile app to display and interact with this data. This will be an iOS and Android mobile
application. It will allow users to see not just current data readings from the microgrid, but also
query and view ranges of previous data for the microgrid.

– A server to manage the data between the aggregator, database, and mobile app. This will allow the
different pieces of the application to communicate between each other and maintain the integrity
of the system.

– Technical Documentation of the product and mentioned deliverables. The documentation will
not only describe functionality and usability of the product, but also the decisions and processes
the team took to create the product and deliverables.

The delivery date for these deliverables are shared among all deliverables as each deliverable will
grow along with the others. The functionality of the product as a whole will define the delivery
dates. The first date is May 1st, 2021, wherein the product must have functionality that encompasses
collecting and displaying solar and battery data from the microgrid. The second delivery date is
December 13th, 2021, at which time the product must encompass all requirements in totality.

2 Project Plan

2.1 TASK DECOMPOSITION

Data Aggregator
– Setup connection between aggregator and microgrid
– Setup connection between aggregator and server
– Create functionality to read data from microgrid
– Create functionality to aggregate data together
– Create functionality to send aggregated data to server / database

Database
– Design database schema
– Setup mysql database
– Setup connection between database and server

Mobile Application
– Find graph library to help display data
– Implement graph library to display data
– Allow users to add search parameters for previous data
– Setup websocket to server to get real time data
– Deploy to Apple App Store
– Deploy to Google Play Store

Server
– Get data from data aggregator to

– store in the database

– send real time to open mobile app instances
– Create api endpoints for the mobile application to get necessary data from
– Create websocket to send real time data to mobile application
– Create functionality to archive existing data
– Allow configuration of data collection

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

In any software project, risks are an issue that it is beneficial to attempt to predict and come up
with solutions to mitigate. This project is no exception, and in this section we will explore the risks
that we foresee might be an issue during development and beyond.

One such risk is of the graphing library that we choose. If it simply does not have the functionality
that we require in displaying our data, then we will have no choice but to search for libraries or even
develop our own solution for the task. But we must also consider, as for any third party software
library, if there exists any vulnerabilities in the code and if the library will be supported throughout
the lifetime of the project. For these instances, it might be acceptable to still continue using the
library, but again most likely a new library will need to be found.

The other big risk for the application is the performance of the data flow throughout the entire
application. The time from when the data is collected in the microgrid to the time the data is
displayed on the mobile application must be reasonably quick (within 1 minute, and hopefully
considerably faster), so if our application is not efficient in moving large amounts of frequent data,
this goal will not be achieved. While this issue may not be completely avoidable due to reliance on
the network as well as feasibility of the data, we plan to mitigate this issue as much as possible by
using well defined and efficient methods to transport the data, as well as reduce and aggregate the
data as much as possible in order to increase efficiency.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Given the nature of our project as a mobile application to interact with data from numerous data
sources, our milestones will be quantifiable in several different ways. Some of these milestones can
be quantified in terms of time, but other milestones will be quantifiable based on feedback and
approval from our advisors and clients. We are very fortunate to have 3 advisors and 1 client for this
project, and the relevant milestones will require approval from all 4 of these individuals. Our
milestones for this project are the following:

1. The mobile application displays data stored in the remote desktop which was obtained
from the microgrid.

2. Data from a crate is stored at 1 second intervals for 24 hours, and 10 minute averages of that
data are automatically calculated and stored separately.

3. New data from the microgrid is visible on the mobile application within 1 minute.
4. The mobile application is able to display solar data from a single crate and contains a

prototype for displaying battery data.
● This milestone is provided by the client of this project and will be considered

completed on approval from the client and the 3 advisors.
5. The means of storing data from the microgrid can be configured to set the rate at which

data is collected, the length of time over which average data is calculated, and the length of
time that data is stored.

6. The mobile application is able to display up to one week of data at a time from a given
source on the microgrid in the form of a graph.

7. The mobile application is able to display data from multiple different sources on the
microgrid.

8. The mobile application has a consistent theme, intuitive user interface, and can display
data in such a way that meets the requirements provided by our client.

● This milestone will be considered completed on approval from the client and the 3
advisors, and it signifies that the project has reached a completed state.

2.4 PROJECT TIMELINE/SCHEDULE

Given our current requirements, this is how we plan to complete the project in two semesters. The
main goal of the schedule presented here is to meet our requirement to be able to present a limited
amount of data with our frontend application by the end of the spring semester.

2.5 PROJECT TRACKING PROCEDURES

The progress of this project will be tracked using tools available in Git. Issue tracking in Git will be
used to associate given commits with smaller tasks such as those outlined in 2.1. This issue tracking
should be highly flexible in order to include other tasks and bug fixes that may become necessary as
development progresses. The labelling service provided by Git should also be used to help associate
merges and commits with issues. We will also use the milestone service provided by git to keep
track of our progress towards the higher-level milestones outlined in 2.5.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Estimated Time Requirement

Setup connection between aggregator and microgrid 20 hours

Setup connection between aggregator and server 10 hours

Create functionality to read data from microgrid 5 hours

Create functionality to aggregate data together 5 hours

Create functionality to send aggregated data to server /
database

10 hours

Design database schema 5 hours

Setup mysql database 5 hours

Setup connection between database and server 15 hours

Find graph library to help display data 12 hours

Implement graph library to display data 6 hours

Allow users to add search parameters for previous data 10 hours

Setup websocket to server to get real time data 15 hours

Deploy to Apple App Store 15 hours

Deploy to Google Play Store 15 hours

Get data from data aggregator to
– store in the database
– send real time to open mobile app instances

20 hours

Create api endpoints for the mobile application to get
necessary data from

5 hours

Create websocket to send real time data to mobile application 10 hours

Create functionality to archive existing data 15 hours

Allow configuration of data collection 20 hours

For the mobile application to be successfully implemented, our team will have to dedicate time to
work on the frameworks for the app. We assigned roles based on experience with various program
applications and experience with backend, database, and frontend frameworks. Ideally each team
member will work with each task because the team needs to have a general knowledge of how each
framework works, so we will work with each other on different tasks depending on what's needed at
the moment.

2.7 OTHER RESOURCE REQUIREMENTS

We will use React Native open-source mobile application to build the frontend, MySQL to build a
database, Spring boot to build the backend, and Virtual Machine running Ubuntu 20.04 LTS to host
the database and server.

2.8 FINANCIAL REQUIREMENTS

From our current expectations we do not predict any financial support will be necessary to
complete the project.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

As far as the team is aware, there is no such existing application that provides the same
functionality as our product. While some of the data sources have their own application for its own
data, for example the Tesla Powerwall, these applications again are only for their own data and do
not display related components data.

3.2 DESIGN THINKING

One requirement that will largely shape the design of the application is the scalability requirements
of the system to include new data sources and crates in the future. This leads to the idea of creating
a modular application such that it is easy to add new pieces to it in the future. The application
presented to the user should be intuitive to new users and provide information in a manner that is
easy to understand. The user should have accessibility to obtain the application and see certain data
that the public should be able to see.

While keeping the aspects that shape our design in mind, we made numerous design choices that
will address these needs. We chose a frontend framework that can provide a user-experience typical
of applications native to the devices we intend to support. We also have requested a server and
chosen backend and database frameworks that can scale well and are easy to modify in the future.

Detail any design thinking driven design “define” aspects that shape your design. Enumerate some
of the other design choices that came up in your design thinking “ideate” phase.

3.3 PROPOSED DESIGN

When proposing a design for a given problem or to accomplish a certain task, there are many
considerations that need to be made. The first thing to note is if any work up to this point has been
done relevant to the task at hand. This could be work that could be transferred to contribute to this
design, or it could be work that may have an effect on how this design needs to be implemented.
With this in mind, consideration should then be made of the overall functional and non-functional
requirements of the project that are relevant to the task.

Any design that is proposed needs to be capable of meeting these requirements no matter what,
and this will help to eliminate any proposed designs that would not work. For this project, we have
no standards to consider from third-party organizations. Once these steps are completed, the last
thing to consider is if the proposed design has sufficient detail in order for it to be implemented. It
may be helpful to consider that the team working to implement a design may not have been
involved in the process of creating the design.

3.4 TECHNOLOGY CONSIDERATIONS

To highlight the strengths, weaknesses, trade-offs and choose the most effective backend framework
out of Spring Boot, Laravel, Django, and Flask for our mobile app development, we focused on six
key elements: License, programming language, age & documentation, performance, professional
projects, and team experience.

Spring Boot Framework:

● License: Apache License (v2.0)
● Programming Language: Java
● Age & Documentation: Released in April of 2014, and official website contains various

example projects and helpful guides
● Performance: Autoconfiguration may add unnecessary dependencies making binaries larger

than necessary. In addition, it can handle multiple requests.
● Professional Projects: Inuit & Zalando
● Team Experience: Software and computer engineers have taken COMS 309

Laravel Framework:

● License: MIT License
● Programming Language: PHP
● Age & Documentation: Released in June of 2011, and official website contains

documentation
● Performance: Generally slower for larger projects
● Professional Projects: 9gag & Kmong
● Team Experience: Unfamiliar

Django Framework:

● License: BSD 3-Clause
● Programming Language: Python
● Age & Documentation: Released in July of 2005, and official website contains

documentation, tutories, topic guides, and installation help
● Performance: Performs well for large projects, feature-heavy, which may feel bloated for

large projects, and can only handle one request at a time.
● Professional Projects: Pinterest, Instagram, and Robinhood
● Team Experience: Unfamiliar

Flask Framework:

● License: BSD 3-Clause
● Programming Language: Python
● Age & Documentation: Released in April of 2010
● Performance: It is suitable for smaller projects and doesn’t handle concurrent requests as

well as others.
● Professional Projects: Netflix, Reddit, and Lyft
● Team Experience: Unfamiliar

Additionally, we chose to pivot towards license availability and pricing, supported platforms,
programming languages, maturity, and other notable aspects for the frontend frameworks.

QT Framework:

● License: Free open source license available, free educational license available, paid
commercial license available, and separate distribution licensing available.

● Supported Platforms: Windows, macOS, Linux, Android, iOS
● Programming Languages: C/C++ for application framework and JavaScript, HTML, and

QML for UI
● Maturity: It was first written in 1991 and had a long history of public bug reports and

forums available. Also, there is extensive documentation on all available QT classes.
● Other Notable Aspects: Multithreading support

React Native:

● License: Free MIT License
● Supported Platforms: Android & iOS
● Programming Languages: JavaScript
● Maturity: It was founded in 2013 but released in 2015. It is supported by Facebook and also

receives contributions from individuals and companies.
● Other Notable Aspects: It aims for a truly native feel on apps and does not support

multithreading.

Flutter:

● License: Free New BSD License
● Supported Platforms: Android & iOS
● Programming Languages: C/C++, Dart, and Skia for UI
● Maturity: It was founded in 2017 and supported by Google. Because it’s recent and new,

there is not much support found online.
● Other Notable Aspects: It does not support true multithreading.

Finally, we chose to center the database to compare data storage, schema, team experience, and
other notable aspects.

SQL (MySQL & PostgreSQL):

● Data Storage: Data is stored in tables.
● Schema: The schema defines the database structure, meaning all rows must have the same

structure.
● Team Experience: Familiar
● Other Notable Aspects: It can use JSON type to handle adding new data source

components, but it will require more space because JSON will be stored as a string.

MongoDB:

● Data Storage: Data is stored in a JSON-like structure.
● Schema: There is no schema, and it is much easier and efficient to change.

● Team Experience: Each team member is unfamiliar with it, and there are poor online
reviews about it.

● Other Notable Aspects: MongoDB query language

3.5 DESIGN ANALYSIS

In the scenario where we are facing a problem with our design we will follow the process listed here.
We will first look back at what we have tried up to this point and try to understand where it failed.
Was it a shortcoming in the framework? Did we just not have the appropriate knowledge yet to use
the tools available to us? Could any of our methods we’ve tried thus far actually accomplish our
task? After asking questions like this, we then need to explore our options in addressing this
problem while keeping several things in mind. For us, the higher level requirements for this project
are simple, and they mainly consist of timing requirements for accessing and managing data, and
what some high level features should be a part of this project upon completion. We do not have to
worry about any formal standards established by any outside organization for this project.

With these things in mind, we can then start looking for solutions to the problem at hand. Some
other things to consider during this process are what repercussions a given solution may have on
other aspects of the project or if a proposed solution might constitute a change in requirements.
Both of these scenarios should be avoided wherever possible. Finally, one last thing to consider in
this process is if the description of the design needs more detail in order to guide this decision and
prevent problems in the future.

3.6 DEVELOPMENT PROCESS

We will be taking a waterfall approach to our development phases. We had decided this approach
because previous experience among team members working in this type of system. We also believed
that due to the smaller scope of the project, waterfall will make it easy to stay concise and on task
when it comes to scheduling a timeline.

3.7 DESIGN PLAN

Above is a diagram of the major modules of our project. These modules are required to store,
access, and display the information mentioned in the requirements for this project.

4 Testing
Like any software project, testing is extremely important to determine not just whether a piece of
code functions correctly or if groups of code function together correctly, but also if the project
meets the requirements set out by the client. In this section, we will discuss our approach and
methods used for testing.

4.1 UNIT TESTING

For unit testing, we plan to have testing coverage for every piece of software that we write. What
this looks like for our backend server written in Java using the Spring framework is having at least
one unit test for every function that we write to achieve total testing coverage of the codebase. To
do this testing we use the JUnit and Mockito testing frameworks to create, define, and assist in
writing and verifying the unit tests. Similarly to test our mobile application written in React Native,
we will use a testing framework called Appium.

4.2 INTERFACE TESTING

The interface testing that we do mostly consists of testing the api endpoints for our backend
application. To do this we can once again use JUnit and Mockito test frameworks, specifically the
modules associated with REST endpoint testing.

4.3 ACCEPTANCE TESTING

To demonstrate that our design requirements are being met, the team first conducts unit and
interface testing described in the previous sections. If these tests are not passed, additional work is
done to correct the errors until the tests pass. Once these tests are completed, the team will alpha
test the product to see if it meets the requirements given by our customers. Once the team is
satisfied that the requirements have been met, or have made changes to the product until the
requirements have been met, the client is then given access to use and personally test the product
to see if it meets their expectations. The client then gives feedback to the team, in which case the
feedback is implemented and the testing process is repeated, or the client accepts the product and
the phase is complete.

4.4 RESULTS

For v1 of the document, we have not yet created or conducted any tests.

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem but
helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

